
INTERNAL STRESSES IN A BODY WITH COHERENT PARTICLES 

A. A. Alekseev UDC 548.4:539.37 

Knowledge of the internal stress field ~ in a body containing an ensemble of coherent 
particles is necessary to the comprehension of many physical processes, for instance, 
hardening [i], spoilage of coherence [2], etc. The field o is often evaluated by the formula 

N 

$___~S{, where N is the quantity of particles in the body while Si is the stress in a body 

of finite size produced by an individual i-th particle, i.e., under the conditions that in 
addition to it there are no other particles in the body (method i) (see [3], e.g.). However, 
the equilibrium condition of the body as a whole turns out to be spoiled here. Up to now 
this circumstance has not been explained. Hence, the following formal method is used to 

N ^oo 

evaluate ~. The field ~ is written inthe form ~ =~,~_~Im, where S i is the stress in an 
I=I 

unbounded medium produced by an individual particle, while the homogeneous component ~Im is 
evaluated from the condition of equilibrium of the body as a whole. Ordinarily ~Im is treated 
as the stress due to imaginary forces [4, 5] (method 2). The stresses outside the particles 
computed by these methods agree, while the stresses within the particles are different. The 
application of the method 2 is legitimate when the elastic moduli is usually taken into ac- 
count by renormalization of the deformation of the nonconformity between the particles and 
the body, the stress $Im is here also considered homogeneous [4] (method 3). However, these 
assumptions require additional foundation. 

It is shown in [6, 7] that the total elastic distortion in an unbounded medium due to a 
number of arbitrary defects* does not equal the sum of the distortions from isolated defects, 
i.e., the additivity principle for elastic distortions is not satisfied. The role of the ef- 
fect of nonadditivity of the elastic stresses in a body of finite size that contains an en- 
semble of coherent particles is analyzed in this paper. 

Let us consider a spherical body of radius R containing a statistically homogeneous dis- 
tribution of spherical particles of the second phase. We limit ourselwes to the case when the 
matrix and the phase are elastically isotropic with the Lamd coefficients ~M, %M, and ~p, re- 
spectively. Let all the particles have the identical radius ro and produce distortions de- 
termined in a dilatation center model with intensity AVo [8] (ordinarily the deformation of 
the nonconformity is c = AVo/(4~ro ~) << i). The volume fraction of the second phase 6 and N 
are connected by the relationship ~ = N(ro/R) ~ We seek the field of elastic displacements in 
the following form [8]: 

outside the particles 

N N 

(la) 

within the i-th particle 

u(r) = A l ( r  - -  r i ) ,  i = ~,2 . . . . .  N ,  ( l b )  

where r i is the radius-vector of the center of the i-th particle, and A, B and AI are con- 
stants determined from the boundary conditions, the continuity conditions for the normal 
stress on the interface between the phase and the matrice, and the magnitude of the jump in 
the displacement on the interface [8]. It is convenient to write the boundary condition in 
the form <ORR > = 0, where ORR is the RR-th component of the stress tensor in a spherical co- 

*The consideration in [6, 7] was performed in the linear elasticity theory approximation for 
the most common defect model, Somigliani dislocations. 
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ordinate system with origin at the center of the body. The average is taken over the particle 

arrangement in the body. The condition of normal stress continuity on the interface between 

the i-th particle and the matrix is written conveniently for the quantity <Orr >, where Orr is 
the rr-th component of the stress tensor in a spherical coordinate system with origin at the 
center of the i-th particle. It is convenient to evaluate the jump that the quantity 
<ur(r)> undergoes during passage through the interface between the i-th particle and the ma- 
trix in the same coordinate system. For individual particles, <ur(r)> undergoes a jump of mag- 
nitude sro [8] on the interface. When an ensemble of particles is present in the body, it is 
necessary to take account of the nonadditivity of the elastic distortions. By using the method 

of [6, 7], the calculation of the jump in the function <ur(r)> yields the value [s -- A(N -- 
l)]ro. We write the equation to determine A, B and A~. From the boundary conditions we ob- 

tain 

4pm B 
A -- 3KmRa, (2)  

from the continuity of the normal stress on the interface 

3KmAN -- 4~mH/rg = 3Kp A1; ( 3 ) 

f r o m  t h e  c o n d i t i o n  f o r  t h e  jump i n  t h e  d i s p l a c e m e n t  on t h e  i n t e r f a c e  

A -~- Blr~ - -  A a = [8 - -  (N - -  ~ ) AI, ( 4 )  

where Km = (2'Pm + 31m)/3, K D = (2~p + 3~D)/3 are the bulk moduli of the matrix and phase, re- 
spectively. The solution of the system ~ (2)-(4) yields 

4~ m 3Kin" ~ a -- -- 47~mKrn~ (I -- 6), (5) A = _ T .  K p , . ( ~ )  a, B=-f . . -Kp. ,%,  A 1 
~ t  

where I = Km(3K D + 4~m) -- 4~m(K m -- Kp)@. The elastic dilatations 8M, ,8_p and the pressures 

PM' Pp in the matrix and phase, respectively, are determined in the form 

Op---- 3AN = 4ffrn 3KpeS, pm=--KmOm , 
I 

0p--aA, =--~3Km~ (l-  6), pp = -- Kpnp, 

(6) 

The mean pressure over the body volume is here 

p ( i - - 8 ) + p p S =  0, 
m 

while the mean elastic dilatation over the body volume is 
4~. 

0m(l  - -  8) + 8p8 -- - ~ 3  (Kp -- Kin)  ~8 (t - -  6). ( 7 )  

If N spheres of identical radius ro are imagined separated in a single-phase body, and then 
these sphere are replaced by particles of a second phase that cause dilatation distortions, 
then the body changes its volume. Such a replacement models the process of dissociation of 
a solid solution. The formula for evaluating the relative change in the volume V of a body 

has the form 

AV=3~8[ t 4~mtK - ] 
-V - I ~ ~ KP) (~- ~)" (8) 

Let us compare the results obtained with analogous relationships calculated earlier by 
known methods. In the case when the elastic moduli of the particles and the body are in 
agreement, (5)-(8) can be obtained by using method 2. For different moduli, the results ob- 
tained by the method 3 are not in agreement, since the passage to different moduli does not 
reduce the renormalization of ~. It is convenient to use the regularities (i), (5)-(8) in 

investigating the aging process. 
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GENERAL MODEL OF SOMIGLIANI DISLOCATIONS 

Sh. Kh. Khannanov UDC 548.571 

i. Underlying the statistical description of plastic molding, substructure evolution, 
fracture,and other processes in real solids is the continual theory of defects (see [1-3], 
e.g.,). Among all the possible defects, dislocations and disclinations whose distributions 
can represent practically any substructures, occupy an important place. The examination of 
dislocations and disclinations as different defects is not always convenient and justified 
since they are Volterra dislocations (only of just a different kind). On the other hand, 
defects of the most general kind, Somigliani dislocations [2], can be the means for a single 
description of dislocations and disclinations. A step is made in this direction in [4] and 
a model is oroDosed for Somigliani dislocations, given by their basic plastic distortion 
fields 8~ and displacement velocities v~. However, such Somigliani dislocations describes only 
the soica~led dislocation model of defegts [3] This is completely adequate for a calcula- 
tion of the dynamical elastic stress fields produced by defects, but certain disclination 
characteristics of the defect structure are not reflected here. The purpose of this paper 
is to obtain a general model of Somigliani defects which will equally take into account both 
the dislocation and the disclination characteristics of defects. As will be shown below, 
such a model should be a generalization of disclination (a rotational Volterra dislocation). 

2. The usual (initial) definition of a Somigliani dislocation is formulated in terms of 
the total displacement fields u~, which undergo arbitrarily changing jumps [u~] along S on the 
defect surface S [2]. In constructing ~ the general model of a Somigliani disl6cation, ~ we pro- 
ceed differently, namely, we give the definition of the model in terms of the basis plastic 
fields, as is done in [4]. 

We shall consider the general model of the Somigliani dislocation as a direct generaliza- 
tion of a disclination which is defined in the continual theory of defects by giving four 
basis plastic fields: ~ is the strain tensor, zP is the bending--twisting tensor, v~ is the 
displacement velocity tensor, and w~ is the rotation velocity tensor [5, 6]. The expressions 
for the basis fields are obtained for an ordinary disclination by considering disclinations 
with a closed surface S(t) encloding a volume V~t) where t is the time. The Starting point 
is the expression for the total displacements ui(r, t) within the volume V(t) [5] 

t 0 : + dv', ( 2 .  l )  
v 

w h e r e  R = r - -  r '  i s  t h e  d i f f e r e n o e  b e t w e e n  t h e  r a d i u s - v e c t o r s  o f  t h e  o b s e r v a t i o n  and  i n t e g r a -  
t i o n  p o i n t s ,  $ ( r )  i s  t h e  t h r e e - d i m e n s i o n a l  D i r a c  d e l t a  f u n c t i o n ,  b ; ,  2q a r e  t h e  r e l a t i v e  
translation and rotation vectors of the edges of the slit S(t), ~qr is the unit antisymmetric- 
tensor, x r are the Cartesian coordinates of the radius-vector r, and x~ are coordinates of a 
point through which the axis of rotation passes. The basis fields are found by the following 
scheme [5, 6]. 
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